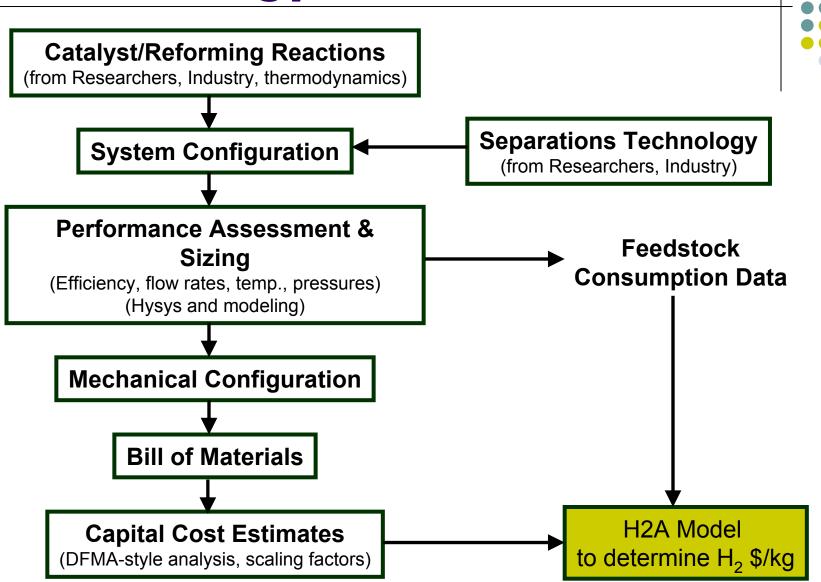
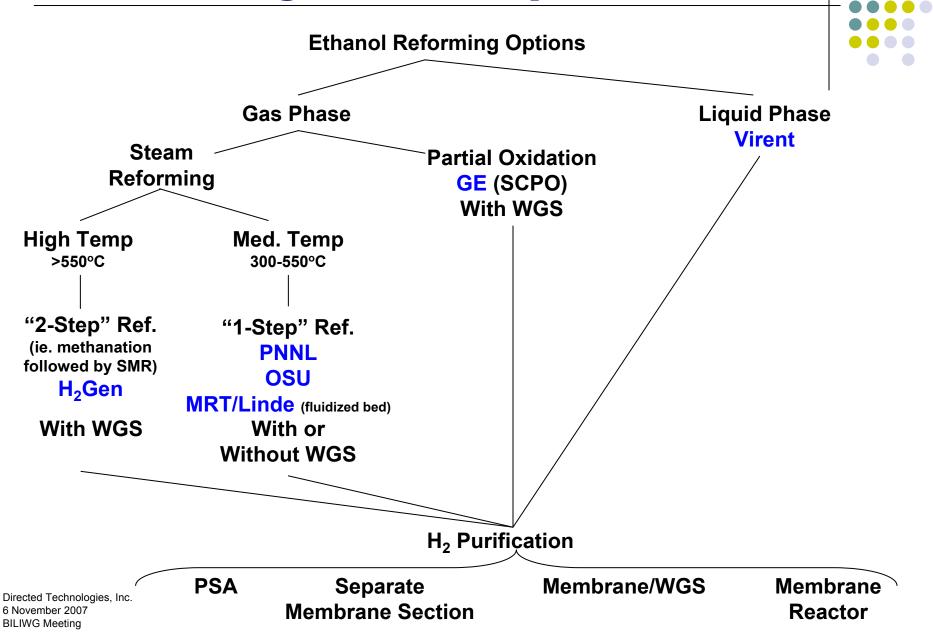


## Cost Analysis of Bio-Derived Liquids Reforming

Brian James
Directed Technologies, Inc.
6 November 2007




#### **Objective**




- Assess cost of H<sub>2</sub> from bio-derived liquids
  - Looking at forecourt scale systems: 100-1500kg/day
  - Emphasis on Ethanol
  - Looking at both "conventional" and "advanced" systems
- Interaction with the Researchers is bi-directional
  - Researchers help me with catalysts, performance, configurations
  - I can assist Researchers with system studies, configurations, and system performance estimates
- Output of my work will be:
  - System/Configuration Definition
  - Performance specification & optimization
  - Capital cost estimation
  - Projected hydrogen \$/kg

### Methodology



## Reforming Hierarchy



#### Potential Ethanol SR Reactions



1) C<sub>2</sub>H<sub>5</sub>OH dehydration to ethylene (C<sub>2</sub>H<sub>4</sub>) and water

dehydration  $C_2H_5OH \rightarrow C_2H_4 + H_2O$ polymerization  $C_2H_4 \rightarrow coke$ 

2) C<sub>2</sub>H<sub>5</sub>OH decomposition/cracking to methane (CH<sub>4</sub>)

 $\begin{array}{ll} \textit{decomposition} & \text{$C_2$H}_5\text{OH} \rightarrow \text{$C$H}_4 + \text{$CO$} + \text{$H}_2$} \\ \textit{steam reforming} & \text{$C$H}_4 + 2\text{H}_2\text{O} \rightarrow 4\text{H}_2 + \text{$CO}_2$} \end{array}$ 

3) C<sub>2</sub>H<sub>5</sub>OH dehydrogenation to acetaldehyde (C<sub>2</sub>H<sub>4</sub>O)

 $\begin{array}{ll} \textit{dehydrogenation} & C_2H_5OH \rightarrow C_2H_4O + H_2\\ \textit{decarbonylation} & C_2H_4O \rightarrow CH_4 + CO\\ \textit{steam reforming} & CH_4 + H_2O \rightarrow 3H_2 + 2CO \end{array}$ 

4) C<sub>2</sub>H<sub>5</sub>OH decomposition into acetone (CH<sub>3</sub>COCH<sub>3</sub>)

decomposition  $2 C_2H_5OH \rightarrow CH_3COCH_3 + CO + 3H_2$ steam reforming  $CH_3COCH_3 + 2H_2O \rightarrow 5H_2 + 3CO$ 

5) Steam reforming of C<sub>2</sub>H<sub>5</sub>OH to syngas (CO + H<sub>2</sub>)

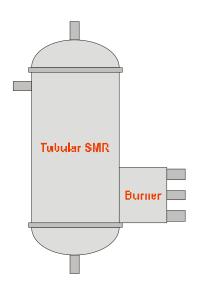
steam reforming  $C_2H_5OH + H_2O \rightarrow 2CO + 4H_2$ 

- 6) Water gas shift
- 7) Methanation
- 8) Coking from CH<sub>4</sub> (methane)

coking  $CH_4 \rightarrow 2H_2 + C$ 

9) Coking from boudouard reaction

coking  $CO_2 \rightarrow O_2 + C$ 


10) Dissociative adsorption of water to form acetic acid (CH<sub>3</sub>COOH)

water adsorption  $C_2H_5OH + H_2O \rightarrow CH_3COOH + 2H_2$ 

## **Reactor Configurations**



#### **Tubular Reactor**



## Annular Heat Exchange Reactor (HER)

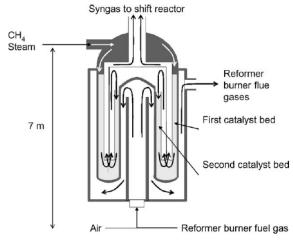
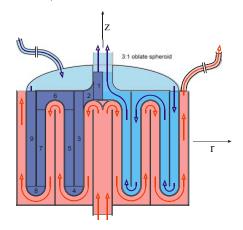
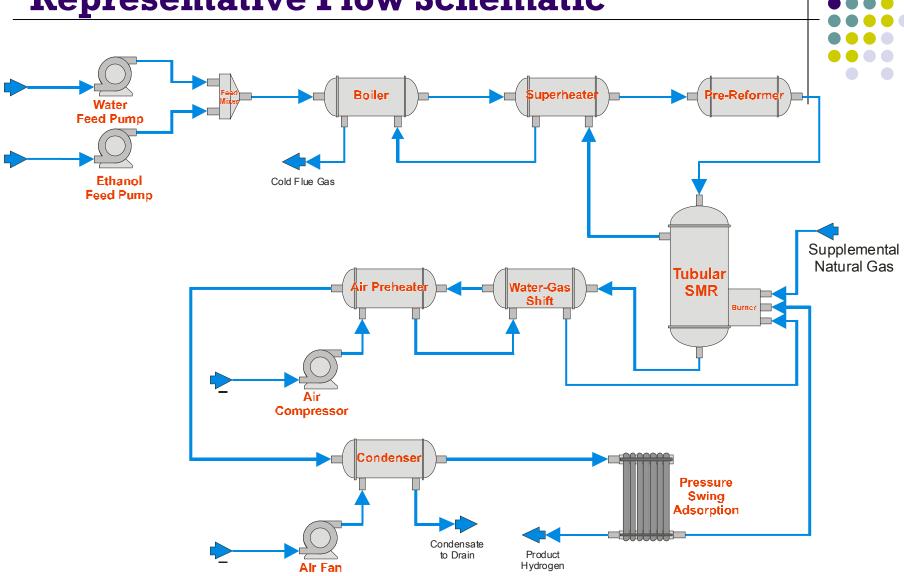





Figure 18: Heat exchange reformer (HER) with annular concentric catalyst bed (170). [170] Topsoe HTCR Compact Hydrogen Units. Haldor Topsoe A/S. www.haldortopsoe.com (accessed Dec. 2004).



#### Representative Flow Schematic



#### **Configurations Planned for Modeling**



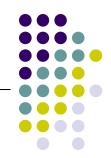
#### **Baseline Configuration:**

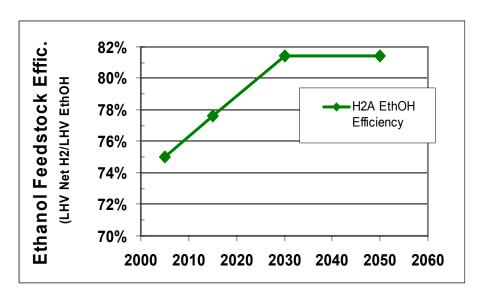
1. Baseline Ethanol System: High temp. SR with pre-reformer & PSA

#### **Advanced Configurations:**

#### **Baseline System:**

- 2. with membrane separation unit
- 3. with combined WGS/membrane


#### **Medium Temperature System:**

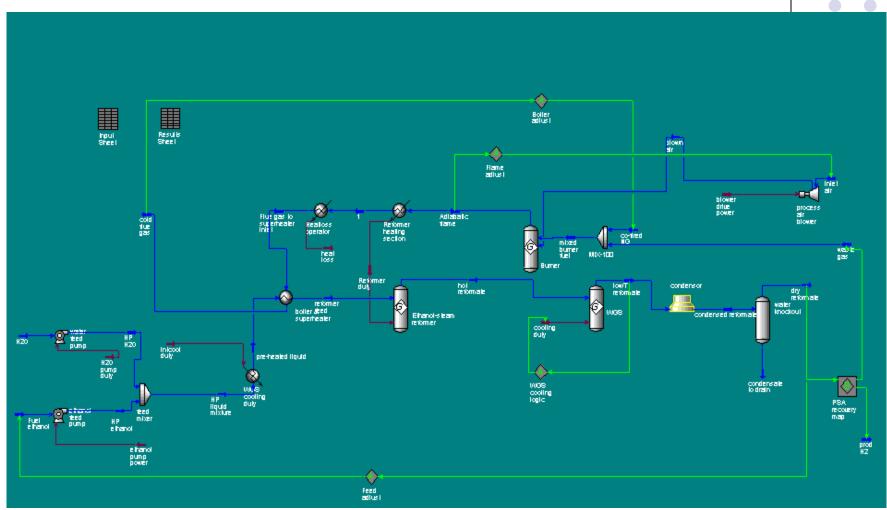

- 4. with PSA
- 5. with membrane separation unit
- 6. with combined WGS/membrane
- 7. with membrane reactor
- 8. Aqueous Reformer System



# Back-up Slides describing previous H2A Ethanol Analysis

## Previous H2A: System Ethanol Feedstock Efficiency (LHV)






#### **Ethanol System Efficiency**

|                                                       | Current/2005 | Advanced/2015 | Long Term/2030 |
|-------------------------------------------------------|--------------|---------------|----------------|
|                                                       | Baseline     | Baseline      | Baseline       |
| Ethanol Efficiency<br>(LHV GJH2/GJEthOH)              |              | 77.6%         | 81.4%          |
| NG Ratio<br>(LHV GJNG/GJH2)                           |              | 10.0%         | 10.5%          |
| Overall Energy Efficiciency<br>(LHV GJH2/GJFeedstock) |              | 72.0%         | 75.0%          |

#### **Previous H2A: Hysys Model of Ethanol System**





## Previous H2A: Other Key 1.5tpd Forecourt Ethanol Assumptions (for Current system)

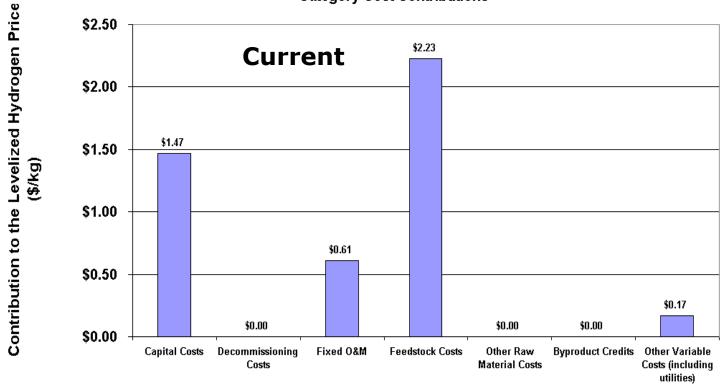
#### **Financial**

- 10% real after-tax discount rate
- 70% plant utilization
- 20 year system lifetime
- 20 year analysis period
- All values in 2005\$

#### **Other Capital Costs (Current)**

- H<sub>2</sub> Compressor:
   \$4500/(kg/hr),1500kg/day,
   20% installation factor
- H<sub>2</sub> Storage: steel tanks at \$818/kgH<sub>2</sub>, 1193 kg H<sub>2</sub> stored
- H<sub>2</sub> Dispensers: dual hose disp., \$22,400 each, 3 needed
- H<sub>2</sub> Safety Equip.: \$18,600
- Site prep, Eng. Design, Contingency: \$415k

#### **Other Costs (Current)**


- Labor: 1232 hours/yr
   (18h/day, 50% to fueling, 3/8 to H<sub>2</sub> fueling)
- Rent: \$0.5/ft<sup>2</sup>, 7199ft<sup>2</sup> for H<sub>2</sub> operations
- Maintenance: 5%/3%/1% per yr of prod./compr./stor., \$800/yr/dispensor
- Prod. Equip. Refurbishment;
   15% of initial cost every 5 yrs,
   complete replacement in 10yrs
   Dispenser Lifetime: 10 yrs
- Ethanol Price: \$1.07/gal Miscellaneous (Current)
- Combination Gasoline/H2
   Dispensing station (3 of 8 dispensers for H<sub>2</sub>)

## Pump Cost of H<sub>2</sub> from H2A Model (Forecourt

EthOH)

|             | Levelized H <sub>2</sub> Price |  |
|-------------|--------------------------------|--|
| Current     | \$4.40/kg                      |  |
| Advanced    | \$3.84/kg                      |  |
| Longer-Term | \$3.60/kg                      |  |

#### **Category Cost Contributions**

